

Aquaforest OCR
SDK for .Net

Reference Guide Version 1.0

October 2009

© Copyright 2009 Aquaforest Limited

http://www.aquaforest.com/

CONTENTS

1 INTRODUCTION ..3

1.1 SDK OVERVIEW..3
1.2 TECHNICAL SUPPORT ..3

2 SDK OVERVIEW ..3

2.1 SYSTEM REQUIREMENTS ...3
2.1.1 Supported Environments...3
2.1.2 .Net Framework ..3
2.1.3 Visual C++ Runtime...3

2.2 FOLDERS ...3
2.3 A SIMPLE EXAMPLE ...3

2.3.1 References...3
2.3.2 Classes..4
2.3.3 Processing Steps ...4
2.3.4 C# Example ..5
2.3.5 VB.Net Example..6

3 APPLICATION DEVELOPMENT AND DEPLOYMENT...7

3.1 REFERENCES..7
3.2 DEPLOYING C# AND VB.NET APPLICATIONS ..7
3.3 DEPLOYING ASP.NET APPLICATIONS..7
3.4 LICENSING...7

4 SAMPLE APPLICATIONS ..8

4.1 SIMPLE ..8
4.2 CONVERTFOLDEROFFILES ..8
4.3 ZONALOCR...8
4.4 ASP.NET...8

5 API REFERENCE..9

5.1 PREPROCESSOR CLASS ..9
5.1.1 Constructor...9
5.1.2 Properties ...9

5.2 OCR CLASS...10
5.2.1 Constructor...10
5.2.2 Properties ...10
5.2.3 Methods ..11
5.2.4 Events ...13
5.2.5 Enumerations..13

5.3 WORDS CLASS...14
5.3.1 Constructor...14
5.3.2 Properties ...14
5.3.3 Methods ..14
5.3.4 WordData Class ...15
5.3.5 Properties ...15
5.3.6 Error Handling...15
5.3.7 Disposal and Temporary Files folders ...15
5.3.8 Multi-threaded applications ...15

6 BACKGROUND - SEARCHABLE PDFS ...16

6.1 WHAT IS A SEARCHABLE PDF? ...16
6.2 INSIDE A SEARCHABLE PDF ..16
6.3 OCR ACCURACY...16

1

6.3.1 Original Image Quality ..16
6.3.2 Image DPI and Format ..16
6.3.3 Despeckle..16
6.3.4 Deskew..17
6.3.5 Auto-Rotate...17
6.3.6 Graphics Areas...17
6.3.7 Language Settings ..17

6.4 HARDWARE AND PERFORMANCE...17
6.4.1 CPU Power...17
6.4.2 Exploiting Multiple CPUs...17
6.4.3 Memory...17

7 ACKNOWLEDGEMENTS ...18

2

1 INTRODUCTION

1.1 SDK Overview
The Aquaforest OCR SDK for .Net incorporates the same high performance OCR engine that is
included in the Aquaforest TIFF Junction and Autobahn DX products.

The SDK API allows developers full control over OCR processing to enable customized integration of
OCR within .Net applications.

 OCR Bitmap or multi-page TIFF Files.
 Create Searchable PDF, RTF or Text output files.
 Control pre-processing options such as despeckle, deskew and autorotate.
 Specify one of 24 supported document languages.
 Enumerate the OCR results, examining the words and characters recognized along with their

co-ordinates.
 Process multi-page TIFF files one page at a time or all in one operation

1.2 Technical Support
Please contact Aquaforest Technical Support with any queries by email support@aquaforest.com. If
required, telephone support is also available; please contact Aquaforest using the telephone contact
details provided on the company website contact page.

2 SDK OVERVIEW

The SDK is provided as a set of .Net Assemblies, Native DLLs and configuration files designed to
allow for straightforward integration into .Net applications.

2.1 System Requirements

2.1.1 Supported Environments

Windows 2003, 2008, Vista, Windows XP.

2.1.2 .Net Framework

.Net Version 3.5

2.1.3 Visual C++ Runtime

The Visual C++ 2008 Redistributable package is required for deployment as well as development.

2.2 Folders
The SDK contains the following folders :

Bin – This contains all the assemblies, DLLs and configurations files.
Docs – SDK Documentation
Samples – Sample C#, VB.Net and ASP.Net samples

2.3 A simple example
The full API reference is in section 5 of this guide, but as a starting point a simple example of a C# and
VB.Net console application that creates a searchable PDF from a source TIFF file is shown below.

2.3.1 References

A reference to the Aquaforest.OCR.Api DLL should be added in your application.
If you wish to access the results of the OCR on a word by word basis, for example to obtain word and
character results including positional information then you will also need to reference
Aquaforest.OCR.Definitions DLL.

3

mailto:support@aquaforest.com

2.3.2 Classes

There are two classes used for the OCR :

PreProcessor – This class configures and performs image pre-processing (such as deskewing images)
to ensure optimal OCR performance.

Ocr – This is the class that configures and performs the Optical Character Recognition.

Additionally, for accessing the OCR results at an individual word level the following classes are used :

Words – This class contains a collection of words in which is contained all the data available for the
words and characters for any given page.

WordData – This class contains a collection of characters that make up the word along with the
positional information for each character and the whole word.

2.3.3 Processing Steps

The following steps are involved in this example

1. Create the Ocr and PreProcessor objects
2. Specify the location of the OCR bin folder
3. Specify Pre-Processor options
4. Specify OCR Options
5. Read the source file
6. Perform the recognition
7. Save the searchable PDF
8. Delete temporary files (these are by default stored in %TEMP% but the location can be

specified using ocr.TempFolder)

4

2.3.4 C# Example

using System;
using Aquaforest.OCR.Api;

namespace ocr
{
 class Program
 {
 static void Main(string[] args)
 {
 try
 {
 // 1. Create Ocr and Preprocessor Objects
 // and enable console output

 Ocr _ocr = new Ocr();
 PreProcessor _preProcessor = new PreProcessor();
 _ocr.EnableConsoleOutput = true;

 // 2. OCR bin folder Location
 // The bin files can be copied to the application bin
 // folder. Alternatively the System Path and ocr
 // Resource folder can be set as shown below and
 // then just the files in the bin_add folder added
 // to the application bin folder.

 string OCRFiles = "C:\\Aquaforest\\OCRSDK\\bin";
 System.Environment.SetEnvironmentVariable("PATH",
System.Environment.GetEnvironmentVariable("PATH") + ";" + OCRFiles);

 _ocr.ResourceFolder = OCRFiles;

 // 3. Set PreProcessor Options
 _preProcessor.Deskew = true;
 _preProcessor.Autorotate = false;

 // 4. Set OCR Options
 _ocr.Language = SupportedLanguages.English;
 _ocr.EnablePdfOutput = true;

 // 5. Read Source TIFF File
 _ocr.ReadTIFFSource(
@"C:\\Aquaforest\\OCRSDK\\docs\\tiffs\\sample.tif");

 // 6. Perform OCR Recognition
 _ocr.Recognize(_preProcessor);

 // 7. Save Output as Searchable PDF
 _ocr.SavePDFOutput(
"C:\\Aquaforest\\OCRSDK\\docs\\tiffs\\sample.pdf", true);

 // 8. Clean Up Temporary Files
 _ocr.DeleteTemporaryFiles();
 }

 catch (Exception e)
 {
 Console.WriteLine("Error in OCR Processing :" + e.Message);
 }
 }
 }
}

5

2.3.5 VB.Net Example

Module Module1

 Sub Main()
 ' 1. Create Ocr and Preprocessor Objects

 Dim _ocr As New Aquaforest.OCR.Api.Ocr()

 Dim _preProcessor As New Aquaforest.OCR.Api.PreProcessor()

 _ocr.EnableConsoleOutput = True

 ' 2. OCR bin folder Location
 ' The bin files can be copied to the application bin folder.
 ' Alternatively the System Path and ocr Resource folder
 ' can be set as shown below.

 Dim OCRFiles As String
 ' 2. OCR bin folder Location
 ' The bin files can be copied to the application bin
 ' folder. Alternatively the System Path and ocr
 ' Resource folder can be set as shown below and
 ' then just the files in the bin_add folder added
 'to the application bin folder.

 OCRFiles = "C:\\Aquaforest\\OCRSDK\\bin"
 System.Environment.SetEnvironmentVariable("PATH",
System.Environment.GetEnvironmentVariable("PATH") + ";" + OCRFiles)

 _ocr.ResourceFolder = OCRFiles

 ' 3. Set PreProcessor Options
 _preProcessor.Deskew = True
 _preProcessor.Autorotate = False

 ' 4. Set OCR Options
 _ocr.Language = Aquaforest.OCR.Api.SupportedLanguages.English
 _ocr.EnablePdfOutput = True

 ' 5. Read Source TIFF File

_ocr.ReadTIFFSource("C:\\Aquaforest\\OCRSDK\\docs\\tiffs\\sample.tif")

 ' 6. Perform OCR Recognition
 _ocr.Recognize(_preProcessor)

 ' 7. Save Output as Searchable PDF

_ocr.SavePDFOutput("C:\\Aquaforest\\OCRSDK\\docs\\tiffs\\sample.pdf", True)

 '8. Clean Up Temporary Files
 _ocr.DeleteTemporaryFiles()

 End Sub

End Module

6

3 APPLICATION DEVELOPMENT AND DEPLOYMENT

3.1 References
To use the API a reference to Aquaforest.Ocr.Api must be included in your application. If you wish to
enumerate the OCR results rather than simply generate PDF, RTF or TXT outputs then you will also
need to add a reference to Aquaforest.Ocr.Definitions.

3.2 Deploying C# and VB.Net Applications
There are two approaches that can be used when building and deploying C# and VB.Net applications.

Approach 1

The entire contents of the SDK bin folder can be copied to the application bin folder.

Approach 2

The contents of the SDK bin_add folder can be copied to the application bin folder and the ocr
resource folder and path of the full bin folder must be specified as shown in the sample code in section
2 above.

3.3 Deploying ASP.Net Applications
The same two approaches that work for C# and VB.Net can also be employed for ASP.Net
applications. Note that with trial licenses a pop-up dialog box appears on the server.

3.4 Licensing
Production system deployment requires that a license string is defined in the code. The license string
defines the number of concurrent OCR processes that can be run.

For example :

ocr.License =
"MT0xMjM0NTY7BLk4uT3RoZXOzM9NDs0PVRydWEYzMDRFOEQxMzg0QkQ5ODREQTk3RQ";

If the string is not specified the SDK will run in evaluation mode. In evaluation mode :

 A trial “pop-up” will appear for each document processed
 Generated searchable PDFs will include indelible watermarks
 Only 3 pages are generated for text or RTF files.

7

4 SAMPLE APPLICATIONS

The samples folder includes a number of sample applications in C#, VB.Net and ASP.Net. The project
files are for Visual Studio 2008. The sample applications are as described below.

4.1 Simple
This includes VB and C# version of the simple application listed in section 2.

4.2 ConvertFolderOfFiles
This forms-based application demonstrates converting a folder of TIFF or Bitmap files. Both VB.Net
and C# versions are included.

4.3 ZonalOCR
This forms-based application demonstrates converting a folder of TIFF or Bitmap files. Both VB.Net
and C# versions are included.

4.4 ASP.Net
This demonstrates a simple web-based application that allows uploading an image file for OCR and
conversion to text, RTF or searchable PDF.

8

5 API REFERENCE

To use the API a reference to Aquaforest.Ocr.Api must be included in your application. If you wish to
enumerate the OCR results rather than simply generate PDF, RTF or TXT outputs then you will also
need to add a reference to Aquaforest.Ocr.Definitions.

5.1 PreProcessor Class

A PreProcessor object, which must be created and passed to the Ocr object, controls all of the pre-
processing that can be performed on the input image in order to improve the quality of the output.
Instantiation of the PreProcessor object will initialise a default set of pre-processing options which
result in minimal image manipulation. For a full description of the pre-processing options available and
appropriate values see section 5.1.2 Properties below.

5.1.1 Constructor

PreProcessor preProcessor = new PreProcessor();

5.1.2 Properties

Property Description
int Despeckle Despeckle the image – The method removes all disconnected elements

within the image that have height or width in pixels less than the
specified figure. The maximum value is 9 and the default value is 0.

bool Deskew Deskew (straighten) the image. The default value is false (disabled).

bool Autorotate Auto-rotate the image – this will ensure all text oriented normally. The
default value is false (disabled).

int Binarize This value should generally only be used under guidance from technical
support. It can control the way that color images are processed and
force binarization with a particular threshold.

int BoxSize This option is ideal for forms where sometimes boxes around text can
cause an area to be identified as graphics. This option removes boxes
from the temporary copy of the imaged used by the OCR engine. It
does not remove boxes from the final image. Technically, this option
removes connected elements with a minimum area (in pixels and
defined by this property). This option is currently only applied for
bitonal images.

string Morph Image Morphology. This option should generally only be used under
guidance from technical support.

bool NoPictures By default, if an area of the document is indentified as a graphic area
then no OCR processing is run on that area. However, certain
documents may include areas or boxes that are identified as “graphic”
or “picture” areas but that actually do contain useful text. Setting
NoPictures to false will cause it to ignore areas identified as pictures
whilst setting it to false will force OCR of areas identified as pictures.

9

5.2 OCR Class

The OCR object is used to control OCR processing, obtain status updates during processing and
retrieve the resulting output from this processing upon completion.

5.2.1 Constructor

Ocr ocr = new Ocr();

5.2.2 Properties

Property Description
String ResourceFolder

This property can optionally be used to set the location of the resources
folder when the resources are not located in the same folder as the
assembly using the API.

SupportedLanguages
Language

Sets the language to be used for the OCR processing. This takes a value
from the enumeration SupportedLanguages which is defined in the API.
Default language is English.

bool EnablePDFOutput Enables or disables the production of Portable Document Format
output. Default value is false (disabled).

bool EnableTextOutput Enables or disables the production of simple text final output. Default
value is true (enabled).

bool EnableRTFOutput Enables or disables the production of Rich Text Format output. Default
value is false (disabled).

int StartPage Sets the first page of the source file that the OCR process will be begin
from (for a multipage source). Throws an
ArgumentOutOfRangeException if a source file has not been set
already (by using the ReadBMPSource or ReadTIFFSource method
prior to setting this property) or if the page is greater than the number
of pages in the source. By default the whole of the document will be
processed.

int EndPage Sets the last page of the source file that the OCR process will be run to
(for a multipage source). Throws an ArgumentOutOfRangeException if
a source file has not been set already (by using the ReadBMPSource or
ReadTIFFSource method prior to setting this property) or if the page is
greater than the number of pages in the source. By default the whole of
the document will be processed.

int CurrentPage Returns the current page for which the OCR has been performed. This
is useful only when using Recognize() in another thread.

bool
HandleExceptionsInternally

When set to true the Ocr object will catch any exceptions for method
calls and simply return false from the method. The exceptions caught
are stored in the LastException property overwriting any previous
value.

Exception LastException Stores last exception caught by the Ocr object.

bool EnableConsoleOutput If enabled then progress messages will be sent to the console. Default is
false.

10

OCR Class Properties - Continued

Property Description
string TempFolder Specifies a temporary folder for storing bitmap images and intermediate

output during OCR processing. If this is not specified, the first of the
following environment variables that is defined will be used : TMP,
TMPDIR, TEMP.

String License Specifies the license key

EnableConsoleOutput

If set to True, progress messages will be written to the console output.
Default false.

EnableDebugOutput If set to True, debug messages will be written to the console output.
Default false.

5.2.3 Methods

Method Description
void ReadBMPSource(string fileName) Checks for the existence of the source file and

sets up the OCR engine for handling the bitmap
image.

void ReadTIFFSource(string fileName) Checks for the existence of the source file and
sets up the OCR engine for handling the TIFF
image.

void Recognize(PreProcessor preProcessor) Performs any pre-processing defined in the
PreProcessor object and then carries out OCR
processing on the pre-processed image.

Words ReadPageWords(int pagenumber)

Returns an instance of the Words class for the
specified page.

Words ReadPageWords(int pagenumber,
Rectangle region)

Returns an instance of the Words class for the
specified page where the words are fully enclosed
in the bounds of the region specified.

string ReadPageString(int pagenumber)

Returns a string containing the words from the
specified page.

string ReadPageString(int pagenumber, Rectangle
region)

Returns a string containing the words for the
specified page where the words are fully enclosed
in the bounds of the region specified.

bool SavePDFOutput(string fileName, bool
overwriteExisting)

Saves the output to a PDF file with the name
specified. If any text was extracted then this will
be searchable in the PDF.

bool SaveRTFOutput(string fileName, bool
overwriteExisting)

Saves the output to a RTF file with the name
provided.

bool SaveTextOutput(string fileName, bool
overwriteExisting)

Saves the text extracted to a simple text file with
the name provided.

Image GetPageImage(int pageNumber) Returns a System.Drawing.Image containing the

11

processed image.

void DeleteTemporaryFiles() Removes temporary files created during the OCR
processing from the system. Note, do not call this
before you have completely finished processing a
file.

void Abort() Stops processing of an ongoing call to Recognize.

12

5.2.4 Events

Event Description
void PageCompleted(int pageNumber, bool
ocrSuccess, bool imageProcessingSuccess)

This event is raised when processing of a page is
complete. The variable pageNumber indicates
which page has just completed, the variable
ocrSuccess indicates whether the OCR for that
page was successful or not (note, a successful
OCR does not necessarily indicate that text was
found on a page), imageProcessingSuccess
indicates whether the pre-process was successful
for that page.

5.2.5 Enumerations

Enumeration Description
SupportedLanguages This enumeration includes all of the languages

currently supported by the API.

13

5.3 Words Class

This class contains a collection of WordData objects which are available on a page by page basis.

5.3.1 Constructor

An instance of this class is obtained by calling the ReadPageWords method on the Ocr object, passing
the page for which the words are required.

5.3.2 Properties

Property Description
int Count

This property returns the number of WordData objects in the
collection.

int Height This property returns the height of the current word.

int Width This property returns the width of the current word.

5.3.3 Methods

Method Description
WordData GetFirst() Returns the first WordData object in the collection and sets the

index to this item.

WordData GetNext() Returns the next WordData object in the collection and sets the
index to this item.

int GetHeight(int index) Returns the word height from the WordData object stored at the
specified index in the collection.

int GetWidth(int index) Returns the word width from the WordData object stored at the
specified index in the collection.

14

5.3.4 WordData Class

This class contains the individual characters along with the positional information relating to each
character in the word and to the word as a whole.

5.3.5 Properties

Property Description
float AverageCharacterHeight

This property returns the average height of all the characters in the
word.

float AverageCharacterWidth This property returns the average width of all the characters in the
word.

int Bottom This property returns the bottom of the word.

int CharacterList This property returns a list of CharacterData objects for the word.

int Height This property returns the height of the word.

int Left This property returns the left edge of the word.

int Top This property returns the Top of the word.

int Width This property returns the width of the word.

string Word This property returns the word as a string.

5.3.6 Error Handling

There are two options regarding error handling using the API.

1. Using the default settings various exceptions can be thrown by the Ocr object so these should
be trapped within the calling code.

2. Alternatively HandleExceptionsInternally can be set to true with the result that method calls
will return false on error but throw no exceptions. The calling code can obtain the last
exception from the LastException property if details of the failure are required.

5.3.7 Disposal and Temporary Files folders

During the OCR processing various temporary files are generated and used at different stages. These
temporary files can be removed by calling DeleteTemporaryFiles. However, such a call should not be
made until all processing (both within the Ocr object and calling code) on a file is complete as these
files are required when calling SaveRTFOutput, SavePDFOutput, SaveTextOutput, GetPageImage and
ReadPageWords. When the Ocr object is disposed of the temporary files are automatically removed.

5.3.8 Multi-threaded applications

Temporary files created and used throughout the OCR processing are named according to the page
number, therefore if Ocr objects are instantiated in multiple threads then a different temporary folder
must be set for each folder. If this is not done then un-expected behaviour will result.

15

6 BACKGROUND - SEARCHABLE PDFS

6.1 What is a Searchable PDF?
A searchable PDF file is a PDF file that includes text that can be searched upon using the standard
Adobe Reader “search” functionality. In addition, the text can be selected and copied from the PDF.
Generally, PDF files created from Microsoft Office Word and other documents are by their nature
searchable as the source document contains text which is replicated in the PDF, but when creating a
PDF from a scanned document and an OCR process needs to be applied to recognize the characters
within the image.

6.2 Inside a Searchable PDF
In the context of Document Imaging, a searchable PDF will typically contain both the original scanned
image plus a separate text layer produced from an OCR process. The text layer is defined in the PDF
file as invisible, but can still be selected and searched upon. PDF files are able to store images using
most of the native compression schemes used in TIFF files, so for example Group 4 TIFF files do not
usually require any format conversion.

6.3 OCR Accuracy
A number of factors affect the accuracy of the text produced by the OCR process – 100% accuracy is
certainly possible under good conditions but each of the following issues, and OCR processing options
will have an impact.

6.3.1 Original Image Quality

Although some pre-processing options such as despeckle and deskew can help in some cases, the
visual quality of the original scan is of paramount importance.

6.3.2 Image DPI and Format

The image resolution should be at least 150 DPI for OCR processing, and preferably 300 DPI for
optimal results, although for good quality scans 200 DPI is often sufficient. Non-lossy formats (TIFF
Group 4, LZW etc) are preferred over lossy formats such as JPEG.

6.3.3 Despeckle

This pre-processing option removes isolated “dots” within the image which can cause recognition
problems, and makes the result image “cleaner”.

16

6.3.4 Deskew

This option can improve OCR results by straightening crooked pages.

6.3.5 Auto-Rotate

OCR processing usually recognizes text written top-to-bottom, left-to-right, so pages that are orientated
any other way (usually landscape pages) need to be re-oriented to enable recognition.

6.3.6 Graphics Areas

There are two options that can be used to control how the OCR engine processes parts of the document
image that appear to be graphics areas.

To ensure that the OCR engine can be forced to process such areas there are two options :

“Treat all Graphics Areas as Text”. This option will ensure the entire document is processed as text.

“Remove Box Lines in OCR Processing”. This option is ideal for forms where sometimes boxes
around text can cause an area to be identified as graphics. This option removes boxes from the
temporary copy of the imaged used by the OCR engine. It does not remove boxes from the final
image. Technically, this option removes connected elements with a minimum area (by default 100
pixels).

6.3.7 Language Settings

The language setting determines the set of characters that will be recognized, and the dictionary that
will be used as a guide.

6.4 Hardware and Performance

6.4.1 CPU Power

The OCR process is highly CPU intensive and will benefit from being given as much CPU power as
possible. As a guide about 2,000 pages per hour can be processed on a 3.0 GHz processor core,
although this will vary according to the source document and OCR options chosen.

6.4.2 Exploiting Multiple CPUs

To take advantage of multiple cores, multiple OCR instances should be run in parallel.

6.4.3 Memory

Memory can be a limiting factor when creating the final PDF, in the case of very large documents. A
rule of thumb would be to have 1GB – 1.5 GB of memory per processor core.

17

18

7 ACKNOWLEDGEMENTS

This product makes use of a number of Open Source components which are included in binary form.
The appropriate acknowledgements and copyright notices are given below.

LEPTONICA

Copyright (C) 2001 Leptonica. All rights reserved.

LIBJPEG

This software is based in part on the work of the Independent JPEG Group.

ZLIB

(C) 1995-2004 Jean-loup Gailly and Mark Adler.

CUNEIFORM

Copyright (c) 1993-2008, Cognitive Technologies. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met

Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution. Neither the name of the Cognitive Technologies nor the names of its contributors
may be used to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE

LIBTIFF

Copyright (c) 1988-1997 Sam Leffler. Copyright (c) 1991-1997 Silicon Graphics, Inc.

Permission to use, copy, modify, distribute, and sell this software and its documentation for any
purpose is hereby granted without fee, provided that (i) the above copyright notices and this permission
notice appear in all copies of the software and related documentation, and (ii) the names of Sam Leffler
and Silicon Graphics may not be used in any advertising or publicity relating to the software without
the specific, prior written permission of Sam Leffler and Silicon Graphics.

THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR
OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR ANY
SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF THE
POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH
THE USE OR PERFORMANCE OF THIS SOFTWARE.

	1 Introduction
	1.1 SDK Overview
	1.2 Technical Support

	2 SDK Overview
	2.1 System Requirements
	2.1.1 Supported Environments
	2.1.2 .Net Framework
	2.1.3 Visual C++ Runtime

	2.2 Folders
	2.3 A simple example
	2.3.1 References
	2.3.2 Classes
	2.3.3 Processing Steps
	2.3.4 C# Example
	2.3.5 VB.Net Example

	3 Application Development and Deployment
	3.1 References
	3.2 Deploying C# and VB.Net Applications
	3.3 Deploying ASP.Net Applications
	3.4 Licensing

	4 Sample Applications
	4.1 Simple
	4.2 ConvertFolderOfFiles
	4.3 ZonalOCR
	4.4 ASP.Net

	5 API Reference
	5.1 PreProcessor Class
	5.1.1 Constructor
	5.1.2 Properties

	5.2 OCR Class
	5.2.1 Constructor
	5.2.2 Properties
	5.2.3 Methods
	5.2.4 Events
	5.2.5 Enumerations

	5.3 Words Class
	5.3.1 Constructor
	5.3.2 Properties
	5.3.3 Methods
	5.3.4 WordData Class
	5.3.5 Properties
	5.3.6 Error Handling
	5.3.7 Disposal and Temporary Files folders
	5.3.8 Multi-threaded applications

	6 Background - Searchable PDFs
	6.1 What is a Searchable PDF?
	6.2 Inside a Searchable PDF
	6.3 OCR Accuracy
	6.3.1 Original Image Quality
	6.3.2 Image DPI and Format
	6.3.3 Despeckle
	6.3.4 Deskew
	6.3.5 Auto-Rotate
	6.3.6 Graphics Areas
	6.3.7 Language Settings

	6.4 Hardware and Performance
	6.4.1 CPU Power
	6.4.2 Exploiting Multiple CPUs
	6.4.3 Memory

	7 Acknowledgements

